题目内容

5.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4|$\overrightarrow{b}$|=2,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,则(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=-$\frac{3}{4}$.

分析 根据向量的数量积公式计算即可.

解答 解:∵非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4|$\overrightarrow{b}$|=2,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos120°=2×$\frac{1}{2}$×(-$\frac{1}{2}$)=-$\frac{1}{2}$,
∴(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=2$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{b}$|2=2×(-$\frac{1}{2}$)+$\frac{1}{4}$=-$\frac{3}{4}$,
故答案为:-$\frac{3}{4}$.

点评 本题考查了向量的数量积的运算,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网