题目内容

11.已知数列{an}为等差数列,a3=5,a4=2a2+a1
(1)求数列{an}的通项公式an
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,数列{bn}的前n项和为Tn
(i)求Tn
(ii)若T1,Tm,Tn成等比数列,m>1,求正整数m,n的值.

分析 (1)设等差数列{an}的公差为d,由a3=5,a4=2a2+a1,可得$\left\{\begin{array}{l}{{a}_{1}+2d=5}\\{{a}_{1}+3d=2({a}_{1}+d)+{a}_{1}}\end{array}\right.$,解得即可得出.
(2)(i)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂项求和”即可得出.
(ii)由于T1,Tm,Tn成等比数列,m>1,可得${T}_{m}^{2}$=T1•Tn,化为:$\frac{3}{n}$=$\frac{-2{m}^{2}+4m+1}{{m}^{2}}$>0,化为2m2-4m-1<0,解出即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a3=5,a4=2a2+a1
∴$\left\{\begin{array}{l}{{a}_{1}+2d=5}\\{{a}_{1}+3d=2({a}_{1}+d)+{a}_{1}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$,
∴an=1+2(n-1)=2n-1.
(2)(i)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴数列{bn}的前n项和为Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
(ii)∵T1,Tm,Tn成等比数列,m>1,
∴${T}_{m}^{2}$=T1•Tn
∴$(\frac{m}{2m+1})^{2}$=$\frac{1}{3}×$$\frac{n}{2n+1}$,
化为:$\frac{3}{n}$=$\frac{-2{m}^{2}+4m+1}{{m}^{2}}$>0,
化为2m2-4m-1<0,
解得:$1-\frac{\sqrt{6}}{2}<m<1+\frac{\sqrt{6}}{2}$,
∴正整数m=2,n=12.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网