题目内容

8.在△ABC中,a、b、c分别是三个内角A、B、C的对边,若向量$\overrightarrow x$=$(a,\sqrt{3}b)$与向量$\overrightarrow y=(cosA,sinB)$共线
(1)求角A;
(2)若a=2,求b+c得取值范围.

分析 (1)根据向量的共线性质和正弦定理即可求出A的值,
(2)根据正弦定理表示出b,c再根据两角和的正弦公式,以及正弦函数的性质即可求出.

解答 解:(1)∵asinB=$\sqrt{3}$bcosA,
∴sinAsinB=$\sqrt{3}$sinBcosA,
∵sinB>0,
∴tanA=$\sqrt{3}$,
∵0<A<π,
∴$A=\frac{π}{3}$
(2)∵$\frac{b}{sinB}=\frac{c}{sinC}=\frac{a}{sinA}=\frac{4}{{\sqrt{3}}}$,
∴$b+c=\frac{4}{{\sqrt{3}}}(sinB+sinC)=\frac{4}{{\sqrt{3}}}(sinB+sin(\frac{2π}{3}-B))=4sin(B+\frac{π}{6})$
∵0<B<$\frac{2π}{3}$⇒$\frac{π}{6}$<$B+\frac{π}{6}$<$\frac{5π}{6}$⇒$\frac{1}{2}$<$sin(B+\frac{π}{6})$≤1,
∴2<b+c≤4.

点评 本题考查了向量的共线和正弦定定理和两角和的正弦公式和正弦函数的性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网