题目内容

16.若实数x,y满足$\left\{\begin{array}{l}{x≤2}\\{y≤3}\\{x+y≥1}\end{array}\right.$,则S=2x+y+1的最大值为(  )
A.8B.4C.3D.2

分析 由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x≤2}\\{y≤3}\\{x+y≥1}\end{array}\right.$的可行域如图,

化目标函数S=2x+y+1为y=-2x+S+1,
由图可知,当直线y=-2x+S+1过B(2,3)时,S有最大值,为2×2+3+1=8.
故选:A.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网