题目内容
若cos(
-α)=m,则sin(
+α)=
+α)=
| π |
| 6 |
| π |
| 3 |
m
m
;cos(| 5π |
| 6 |
-m
-m
.分析:由于(
-α)+(
+α)=
,(
-α)+(
+α)=π,利用三角函数的互余与互补关系式即可求得答案.
| π |
| 6 |
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| 5π |
| 6 |
解答:解:∵(
-α)+(
+α)=
,(
-α)+(
+α)=π,cos(
-α)=m;
∴sin(
+α)=sin[
-(
-α)]=cos(
-α)=m;
cos(
+α)=cos[π-(
-α)]=-cos(
-α)=-m.
故答案为:m,-m.
| π |
| 6 |
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
∴sin(
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
cos(
| 5π |
| 6 |
| π |
| 6 |
| π |
| 6 |
故答案为:m,-m.
点评:本题考查:两角和与差的余弦,考查互余与互补关系式的应用,属于中档题.
练习册系列答案
相关题目