题目内容

2.若x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{2x-y-1≤0}\end{array}\right.$,则z=2x+y的最小值为2.

分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.

解答 解:由z=2x+y,得y=-2x+z
作出不等式组对应的平面区域如图:
由图象可知当直线y=-2x+z过点A时,直线y=-2x+z的在y轴的截距最小,此时z最小,
由$\left\{\begin{array}{l}{x+y-2=0}\\{x-2y+4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,即A(0,2),
此时z=2×0+2=2,
故答案为:2.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网