题目内容
已知x,y均为正数,且
+
=1,求x+y的最小值及取得最小值时x,y的值.
| 1 |
| x |
| 9 |
| y |
考点:基本不等式
专题:不等式的解法及应用
分析:利用“乘1法”与基本不等式的性质即可得出.
解答:
解:∵x,y均为正数,且
+
=1,
∴x+y=(x+y)(
+
)=10+
+
≥10+2
=16,
当且仅当x=4时,等号成立,即(x+y)min=16.
| 1 |
| x |
| 9 |
| y |
∴x+y=(x+y)(
| 1 |
| x |
| 9 |
| y |
| y |
| x |
| 9x |
| y |
|
当且仅当x=4时,等号成立,即(x+y)min=16.
点评:本题考查了“乘1法”与基本不等式的性质,属于基础题.
练习册系列答案
相关题目
命题“若x>2,则x>1”的逆命题是( )
| A、若x>1,则x>2 |
| B、若x≤2,则x≤1 |
| C、若x≤1,则x≤2 |
| D、若x<2,则x<1 |
设集合A={x|x+2>0},B={x|y=
},则A∩B=( )
| 1 | ||
|
| A、{x|x>-2} |
| B、{x|x<3} |
| C、{x|x>3或x<-2} |
| D、{x|-2<x<3} |
已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=( )
| A、{3,5} |
| B、{1,2,3,4,5,6} |
| C、{7} |
| D、{1,4,7} |
已知i是虚数单位,复数z1=1+2i,z2=3+4i,那么z1+z2=( )
| A、5+5i | B、4+6i |
| C、10i | D、10 |