题目内容
已知正项等差数列an的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
,记数列bn的前n项和为Tn,求Tn.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
| an |
| 3n |
(Ⅰ)∵S3=12,即a1+a2+a3=12,
∴3a2=12,所以a2=4.(1分)
又∵2a1,a2,a3+1成等比数列,
∴a22=2a1•(a3+1),即a22=2(a2-d)•(a2+d+1),(3分)
解得,d=3或d=-4(舍去),
∴a1=a2-d=1,故an=3n-2.(6分)
(Ⅱ)bn=
=
=(3n-2)•
,
∴Tn=1×
+4×
+7×
++(3n-2)×
,①
①×
得
Tn=1×
+4×
+7×
++(3n-5)×
+(3n-2)×
.②
①-②得
Tn=
+3×
+3×
+3×
++3×
-(3n-2)×
=
+3×
-(3n-2)×
=
-
×
-(3n-2)×
,(10分)
∴Tn=
-
×
-
×
=
-
×
.(12分)
∴3a2=12,所以a2=4.(1分)
又∵2a1,a2,a3+1成等比数列,
∴a22=2a1•(a3+1),即a22=2(a2-d)•(a2+d+1),(3分)
解得,d=3或d=-4(舍去),
∴a1=a2-d=1,故an=3n-2.(6分)
(Ⅱ)bn=
| an |
| 3n |
| 3n-2 |
| 3n |
| 1 |
| 3n |
∴Tn=1×
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
①×
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
①-②得
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| ||||
1-
|
| 1 |
| 3n+1 |
| 5 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3n-1 |
| 1 |
| 3n+1 |
∴Tn=
| 5 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3n-2 |
| 3n-2 |
| 2 |
| 1 |
| 3n |
| 5 |
| 4 |
| 6n+5 |
| 4 |
| 1 |
| 3n |
练习册系列答案
相关题目
已知正项等差数列{an}的前20项的和为100,那么a7a14的最大值为( )
| A、75 | B、100 | C、50 | D、25 |