题目内容
已知双曲线
-
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分析:由题意因为圆C:x2+y2-6x+5=0把它变成圆的标准方程知其圆心为(3,0),利用双曲线的右焦点为圆C的圆心及双曲线的标准方程建立a,b的方程.再利用双曲线
-
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,建立另一个a,b的方程.
| x2 |
| a2 |
| y2 |
| b2 |
解答:解:因为圆C:x2+y2-6x+5=0?(x-3)2+y2=4,由此知道圆心C(3,0),圆的半径为2,又因为双曲线的右焦点为圆C的圆心而双曲线
-
=1(a>0,b>0),∴a2+b2=9①又双曲线
-
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,而双曲线的渐近线方程为:y=±
x?bx±ay=0,∴
=2 ② 连接①②得
所以双曲线的方程为:
-
=1,
故选A.
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| b |
| a |
| |3b| | ||
|
|
所以双曲线的方程为:
| x2 |
| 5 |
| y2 |
| 4 |
故选A.
点评:此题重点考查了直线与圆相切的等价条件,还考查了双曲线及圆的标准方程及利用方程的思想进行解题.
练习册系列答案
相关题目