题目内容

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(  )
A、
x2
5
-
y2
4
=1
B、
x2
42
-
y2
52
=1
C、
x2
32
-
y2
62
=1
D、
x2
62
-
y2
32
=1
分析:由题意因为圆C:x2+y2-6x+5=0把它变成圆的标准方程知其圆心为(3,0),利用双曲线的右焦点为圆C的圆心及双曲线的标准方程建立a,b的方程.再利用双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,建立另一个a,b的方程.
解答:解:因为圆C:x2+y2-6x+5=0?(x-3)2+y2=4,由此知道圆心C(3,0),圆的半径为2,又因为双曲线的右焦点为圆C的圆心而双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),∴a2+b2=9①又双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,而双曲线的渐近线方程为:y=±
b
a
x
?bx±ay=0,∴
|3b|
a2+b2
=2    ②
  连接①②得
b=2
a2=5

所以双曲线的方程为:
x2
5
-
y2
4
=1

故选A.
点评:此题重点考查了直线与圆相切的等价条件,还考查了双曲线及圆的标准方程及利用方程的思想进行解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网