题目内容

20.设动点P(x,y)(x≥0)到定点F(1,0)的距离比它到y轴的距离大1,记点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设D(x0,2)是曲线C上一点,与两坐标轴都不平行的直线l1,l2过点D,且它们的倾斜角互补.若直线l1,l2与曲线C的另一交点分别是M,N,证明直线MN的斜率为定值.

分析 (Ⅰ)由题意知,动点P(x,y)(x≥0)到定点F(1,0)的距离等于点P(x,y)到直线x=-1的距离,由抛物线的定义知点P的轨迹方程.
(Ⅱ)由D(x0,2)在曲线C上,得4=4x0⇒x0=1,从而D(1,2),设而不求的思想,利用韦达定理,通过直线l1,l2过点D,且它们的倾斜角互补建立关系,证明直线MN的斜率为定值.

解答 解:(Ⅰ)由题意知,动点P(x,y)(x≥0)到定点F(1,0)的距离等于点P(x,y)到直线x=-1的距离,
由抛物线的定义知点P的轨迹方程是以F(1,0)为焦点,以x=-1为准线的抛物线,
故曲线C的方程为y2=4x.
(Ⅱ)由D(x0,2)在曲线C上,得4=4x0⇒x0=1,从而D(1,2)
设M(x1,y1),N(x2,y2),
直线l1:y=k(x-1)+2,
则l2:y=-k(x-1)+2,
由$\left\{{\begin{array}{l}{y=k(x-1)+2}\\{{y^2}=4x}\end{array}}\right.⇒{k^2}{x^2}-(2{k^2}-4k+4)x+{(k-2)^2}=0$,
∴${x_1}×1=\frac{{{{(k-2)}^2}}}{k^2}=\frac{{{k^2}-4k+4}}{k^2}$
同理${x_2}=\frac{{{k^2}+4k+4}}{k^2}$,
∴${x_1}+{x_2}=\frac{{2{k^2}+8}}{k^2},{x_1}-{x_2}=\frac{-8}{k}$,
∴${y_1}-{y_2}=k({x_1}+{x_2})-2k=\frac{8}{k}$
∴${k_{MN}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{\frac{8}{k}}}{{-\frac{8}{k}}}=-1$
直线MN的斜率为定值-1.

点评 本题考查了抛物线的定义和直线与抛物线的位置关系的运用能力和计算能力.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网