题目内容

在△ABC中,a、b、c分别是角A、B、C的对边,若a2+b2=2015c2,则
tanA•tanB
tanC(tanA+tanB)
的值为(  )
A、1007
B、
2015
2
C、2014
D、2015
考点:三角函数的化简求值,余弦定理
专题:三角函数的求值
分析:由正弦定理可得sin2A+sin2B=2015sin2C.再由余弦定理可得 cosC=
a2+b2-c2
2ab
=
2014sin2C
2sinAsinB

可得2sinAsinBcosC=2014sin2C.再利用同角三角函数的基本关系化简要求的式子,可得结果.
解答: 解:由已知a2+b2=2015c2,可得sin2A+sin2B=2015sin2C.
由余弦定理可得 cosC=
a2+b2-c2
2ab
=
2014sin2C
2sinAsinB

可得2sinAsinBcosC=2014sin2C.
tanA•tanB
tanC(tanA+tanB)
=
sinAsinBcosC
sin2C
=
2014
2
=1007;
故选A.
点评:本题主要考查正弦定理和余弦定理的应用、同角三角函数的基本关系,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网