题目内容

19.设数列{an}的通项公式为an=2n-1,则数列{$\frac{{a}_{n}}{{2}^{n}}$}的前n项和Sn等于3-$\frac{2n+3}{{2}^{n}}$.

分析 通过数列{an}的通项公式为an=2n-1可知$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,利用Sn=1•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+…+(2n-1)•$\frac{1}{{2}^{n}}$与$\frac{1}{2}$Sn=1•$\frac{1}{{2}^{2}}$+3•$\frac{1}{{2}^{3}}$+…+(2n-3)•$\frac{1}{{2}^{n}}$+(2n-1)•$\frac{1}{{2}^{n+1}}$错位相减、计算即得结论.

解答 解:∵数列{an}的通项公式为an=2n-1,
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,
∴Sn=1•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+…+(2n-1)•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Sn=1•$\frac{1}{{2}^{2}}$+3•$\frac{1}{{2}^{3}}$+…+(2n-3)•$\frac{1}{{2}^{n}}$+(2n-1)•$\frac{1}{{2}^{n+1}}$,
错位相减得:$\frac{1}{2}$Sn=$\frac{1}{2}$+2($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)-(2n-1)•$\frac{1}{{2}^{n+1}}$
=$\frac{1}{2}$+2•$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(2n-1)•$\frac{1}{{2}^{n+1}}$
=$\frac{1}{2}$+1-$\frac{1}{{2}^{n-1}}$-(2n-1)•$\frac{1}{{2}^{n+1}}$
=$\frac{3}{2}$-(2n+3)•$\frac{1}{{2}^{n+1}}$,
∴Sn=3-$\frac{2n+3}{{2}^{n}}$,
故答案为:3-$\frac{2n+3}{{2}^{n}}$.

点评 本题考查数列的求和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网