题目内容

2.已知p:2a≤x≤a2+1,q:x2-3(a+1)x+6a+2≤0,若p是q的充分条件,求实数a取值范围.

分析 设A={x|2a≤x≤a2+1},B={x|(x-2)[x-(3a+1)]≤0},由于p是q的充分条件,可得A⊆B.
(1)当a≥$\frac{1}{3}$时,此时B={x|2≤x≤3a+1},可得$\left\{\begin{array}{l}{2a≥2}\\{{a}^{2}+1≤3a+1}\end{array}\right.$.
(2)当a<$\frac{1}{3}$时,B={x|3a+1≤x≤2},可得$\left\{\begin{array}{l}{2a≥3a+1}\\{{a}^{2}+1≤2}\end{array}\right.$.

解答 解:x2-3(a+1)x+6a+2≤0,化为(x-2)[x-(3a+1)]≤0,
设A={x|2a≤x≤a2+1},B={x|(x-2)[x-(3a+1)]≤0},∵p是q的充分条件,∴A⊆B.
(1)当a≥$\frac{1}{3}$时,B={x|2≤x≤3a+1},∴$\left\{\begin{array}{l}{2a≥2}\\{{a}^{2}+1≤3a+1}\end{array}\right.$,解得1≤a≤3.
(2)当a<$\frac{1}{3}$时,B={x|3a+1≤x≤2},∴$\left\{\begin{array}{l}{2a≥3a+1}\\{{a}^{2}+1≤2}\end{array}\right.$,解得a=-1.
∴实数a取值范围是{a|1≤a≤3,或a=-1}.

点评 本题考查了不等式的性质、简易逻辑的判定方法、集合的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网