ÌâÄ¿ÄÚÈÝ
18£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2cos¦È£¬¹ýµãP£¨2£¬-1£©µÄÖ±Ïßl£º$\left\{{\begin{array}{l}{x=2+tcos{{45}¡ã}}\\{y=-1+tsin{{45}¡ã}}\end{array}}$£¨tΪ²ÎÊý£©ÓëÇúÏßC½»ÓÚM¡¢NÁ½µã£®£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Çó|PM|2+|PN|2µÄÖµ£®
·ÖÎö £¨1£©ÇúÏßC£º¦Ñsin2¦È=2cos¦È£¬¼´¦Ñ2sin2¦È=2¦Ñcos¦ÈÀûÓü«×ø±êÓëÖ±½Ç×ø±êÖ®¼äµÄ¹ØÏµ¼´¿ÉµÃ³öÆäÖ±½Ç×ø±ê·½³Ì£»ÏûÈ¥²ÎÊýtµÃµ½ÇúÏßCµÄÖ±½Ç×ø±ê·½£º
£¨2£©½«Ö±Ïßl£º$\left\{{\begin{array}{l}{x=2+tcos{{45}¡ã}}\\{y=-1+tsin{{45}¡ã}}\end{array}}$´úÈëÇúÏßCµÄ±ê×¼·½³Ì£ºy2=2xµÃ£ºt2-4$\sqrt{2}$t-6=0£¬ÀûÓÃÖ±ÏߵIJÎÊý·½³ÌÖÐtµÄ¼¸ºÎÒâÒå½áºÏ¸ùÓëϵÊýµÄ¹ØÏµ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÇúÏßC£º¦Ñsin2¦È=2cos¦È£¬¼´¦Ñ2sin2¦È=2¦Ñcos¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪy2=2x£»
Ö±Ïßl£º$\left\{{\begin{array}{l}{x=2+tcos{{45}¡ã}}\\{y=-1+tsin{{45}¡ã}}\end{array}}$£¨tΪ²ÎÊý£©£¬ÏûÈ¥t£¬¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ìx-y-3=0£»
£¨2£©½«Ö±Ïßl£º$\left\{{\begin{array}{l}{x=2+tcos{{45}¡ã}}\\{y=-1+tsin{{45}¡ã}}\end{array}}$´úÈëÇúÏßCµÄ±ê×¼·½³Ì£ºy2=2xµÃ£ºt2-4$\sqrt{2}$t-6=0£¬
¡à|PM|2+|PN|2=|t1|2+|t2|2=£¨t1-t2£©2+2t1t2=32£®
µãÆÀ ±¾Ì⿼²éµãµÄ¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬¿¼²é²ÎÊýµÄ¼¸ºÎÒâÒ壮ÀûÓÃÖ±½Ç×ø±êÓë¼«×ø±ê¼äµÄ¹ØÏµ£¬¼´ÀûÓæÑcos¦È=x£¬¦Ñsin¦È=y£¬¦Ñ2=x2+y2£¬½øÐдú»»¼´µÃ£®
| A£® | $\frac{1}{7}$ | B£® | $\frac{1}{5}$ | C£® | 5 | D£® | 7 |
| A£® | $-\frac{{\sqrt{2}}}{5}$ | B£® | $\frac{{\sqrt{2}}}{5}$ | C£® | $-\frac{{\sqrt{2}}}{10}$ | D£® | $\frac{{\sqrt{2}}}{10}$ |
| A£® | 036 | B£® | 081 | C£® | 136 | D£® | 738 |
| A£® | $\frac{{{e^2}+1}}{2}$ | B£® | $\frac{{{e^2}-3}}{2}$ | C£® | $\frac{{{e^2}+3}}{2}$ | D£® | $\frac{{{e^2}-5}}{2}$ |
| A£® | -$\frac{1}{2}$ | B£® | $\frac{1}{2}$ | C£® | -$\frac{\sqrt{3}}{2}$ | D£® | $\frac{\sqrt{3}}{2}$ |
| A£® | y=-2x+1 | B£® | y=-$\frac{2}{x}$ | C£® | y=2x | D£® | y=x2 |