题目内容
已知为抛物线上异于原点的两个点,为坐标原点,直线斜率为2,则重心的纵坐标为( )
A.2 B. C. D.1
执行如图所示的程序框图,则输出的结果为( )
A.8 B.9 C.10 D.11
若函数,则 .
已知,动点满足,.
(1)求的值,并写出的轨迹曲线的方程;
(2)动直线与曲线交于两点,且,是否存在圆使得恰好是该圆的切线,若存在,求出;若不存在,说明理由.
采用随机模拟实验估计抛掷一枚硬币三次恰有两次正面朝上的概率:由计算机产生随机数0或1,其中1表示正面朝上,0表示反面朝上,每三个随机数作为一组,代表抛掷三次的结果,已知随机模拟实验产生了如下20组随机数:
101 111 010 101 100 001 101 111 110 000
011 001 010 100 000 101 101 010 011 001
由此估计抛掷一枚硬币三次恰有两次正面朝上的概率是 .
执行如图所示的程序框图,输出的是下列哪个式子的值( )
A.
B.
C.
D.
已知椭圆与双曲线的离心率互为倒数,且直线经过椭圆的右顶点.
(1)求椭圆的标准方程;
(2)设不过原点的直线与椭圆交于、两点,且直线、、的斜率依次成等比数
列,求直线的斜率.
函数的定义域是( )
A. B. C. D.
设,集合A是奇数集,集合B是偶数集,若命题,则( )
A.非 B.非
C.非 D.非