题目内容

17.已知抛物线C:x2=4y的焦点为F,准线为l,P是l上一点,Q是直线PF与抛物线C的一个交点,若$\overrightarrow{PF}=4\overrightarrow{QF}$,则|QF|=(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.3D.6

分析 由抛物线的焦点坐标和准线方程,设出P,Q的坐标,得到向量PF,QF的坐标,由向量共线的坐标关系,以及抛物线的定义,即可求得.

解答 解:抛物线C:x2=4y的焦点为F(0,1),准线为l:y=-1,
设P(a,-1),Q(m,$\frac{{m}^{2}}{4}$),
则$\overrightarrow{PF}$=(-a,2),$\overrightarrow{QF}$=(-m,1-$\frac{{m}^{2}}{4}$),
∵$\overrightarrow{PF}=4\overrightarrow{QF}$,
∴a=4m,2=4(1-$\frac{{m}^{2}}{4}$),
∴m2=2,
由抛物线的定义可得|QF|=$\frac{{m}^{2}}{4}$+1=$\frac{3}{2}$.
故选:B.

点评 本题考查抛物线的定义和性质,考查向量知识的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网