ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖª$\overrightarrow{a}$=£¨1£¬-x£©£¬$\overrightarrow{b}$=£¨x2£¬4cos¦È£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$-1£¬¦È¡Ê[-¦Ð£¬¦Ð]£®£¨1£©µ±¦È=$\frac{2}{3}$¦Ðʱ£¬¸Ãº¯Êýf£¨x£©ÔÚ[-2£¬2]ÉϵÄ×î´óÖµºÍ×îСֵ£»
£¨2£©Èôf£¨x£©ÔÚÇø¼ä[1£¬$\sqrt{2}$]Éϲ»µ¥µ÷£¬Çó¦ÈµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©Ö±½ÓÀûÓÃÊýÁ¿»ýµÄ×ø±ê±íʾÇóµÃf£¨x£©£¬´úÈë¦È=$\frac{2}{3}$¦ÐºóÀûÓÃÅä·½·¨ÇóµÃº¯Êý×îÖµ£»
£¨2£©ÓÉf£¨x£©ÔÚÇø¼ä[1£¬$\sqrt{2}$]Éϲ»µ¥µ÷£¬µÃ1$£¼2cos¦È£¼\sqrt{2}$£¬È»ºóÇó½âÈý½Ç²»µÈʽµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÓÉ$\overrightarrow{a}$=£¨1£¬-x£©£¬$\overrightarrow{b}$=£¨x2£¬4cos¦È£©£¬µÃ
f£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$-1=x2-4xcos¦È-1£¬
µ±$¦È=\frac{2¦Ð}{3}$ʱ£¬f£¨x£©=x2+2x-1=£¨x+1£©2-2£®
º¯Êýf£¨x£©ÔÚ[-2£¬2]ÉϵÄ×î´óÖµf£¨x£©max=f£¨2£©=7£¬×îСֵf£¨x£©min=f£¨-1£©=-2£»
£¨2£©Èôf£¨x£©ÔÚÇø¼ä[1£¬$\sqrt{2}$]Éϲ»µ¥µ÷£¬Ôò1$£¼2cos¦È£¼\sqrt{2}$£¬¼´$\frac{1}{2}£¼cos¦È£¼\frac{\sqrt{2}}{2}$£®
¡ß¦È¡Ê[-¦Ð£¬¦Ð]£¬¡à¦È¡Ê£¨$-\frac{¦Ð}{3}£¬-\frac{¦Ð}{4}$£©¡È£¨$\frac{¦Ð}{4}£¬\frac{¦Ð}{3}$£©£®
µãÆÀ ±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬ѵÁ·ÁËÀûÓÃÅä·½·¨Çó¶þ´Îº¯ÊýµÄ×îÖµ£¬¿¼²éÈý½Ç²»µÈʽµÄ½â·¨£¬ÊÇÖеµÌ⣮
| A£® | $y=\frac{{{x^2}-1}}{x-1}Óëy=x+1$ | B£® | $y=lgxÓëy=\frac{1}{2}lg{x^2}$ | ||
| C£® | y=lg£¨x2-1£©Óëy=lg£¨x+1£©+lg£¨x-1£© | D£® | y=xÓëy=${log}_{a}{a}^{x}$ |
| A£® | ƽÐÐ | B£® | Ïཻ | C£® | ÒìÃæ | D£® | ´¹Ö± |
| A£® | {1£¬2£¬5} | B£® | {2£¬5} | C£® | {2£¬5£¬7} | D£® | {1£¬2£¬5£¬7} |