题目内容

7.已知函数f(x)=(sinx+cos)2+2$\sqrt{3}$sin2x
(1)求函数f(x)的最小正周期并求出单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,求f(B)的取值范围.

分析 (1)利用三角函数的恒等变换化简函数的解析式为f(x)=2sin(2x-$\frac{π}{3}$)+1+$\sqrt{3}$,由此求得函数f(x)的最小正周期.
(2)在△ABC中,由条件利用余弦定理求得cosA的值,可得A的值,可得B的范围,再利用正弦函数的定义域和值域求得f(B)的范围.

解答 解:(1)函数f(x)=(sinx+cos)2+2$\sqrt{3}$sin2x=1+sin2x+2$\sqrt{3}$•$\frac{1-cos2x}{2}$
=sin2x-$\sqrt{3}$cos2x+1+$\sqrt{3}$=2sin(2x-$\frac{π}{3}$)+1+$\sqrt{3}$的最小正周期为$\frac{2π}{2}$=π.
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.
(2)在△ABC中,2acosC+c=2b,∴2a•$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$+c=2b,即b2+c2-a2=bc,
∴cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{1}{2}$,∴A=$\frac{π}{3}$.
∴0<B<$\frac{2π}{3}$,-$\frac{π}{3}$<2B-$\frac{π}{3}$<π,∴sin(2B-$\frac{π}{3}$)∈(-$\frac{\sqrt{3}}{2}$,1],
可得f(B)∈(1,$3+\sqrt{3}$].

点评 本题主要考查三角恒等变换,正弦函数的周期性和单调性,余弦定理、正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网