题目内容
【题目】已知若椭圆
:
(
)交
轴于
,
两点,点
是椭圆
上异于
,
的任意一点,直线
,
分别交
轴于点
,
,则
为定值
.
(1)若将双曲线与椭圆类比,试写出类比得到的命题;
(2)判定(1)类比得到命题的真假,请说明理由.
【答案】(1)见解析;(2)命题为真命题,证明见解析.
【解析】
(1)根据类比推理的基本原则可直接写出结果;
(2)设
,
,
,表示出直线
方程后可求得
点坐标,由此得到
,同理得到
,根据平面向量的数量积运算可构造方程,结合点
在双曲线上可化简得到结果.
(1)类比得命题:若双曲线
:
交
轴于
两点,点
是双曲线
上异于
的任意一点,直线
分别交
轴于点
,则
为定值
.
(2)在(1)中类比得到的命题为真命题,证明如下:
不妨设
,
,
,则
,
∴直线
方程为
.
令
,则
,∴点
坐标为
.
又
,∴
.
同法可求得:
.
∴
.
又∵
,∴
.
【题目】在一次数学测验后,数学老师将某班全体学生(50人)的数学成绩进行初步统计后交给其班主任(如表).
分数 | 5060 | 60~70 | 70-80 | 80-90 | 90~100 |
人数 | 2 | 6 | 10 | 20 | 12 |
请你帮助这位班主任完成下面的统计分析工作:
(1)列出频率分布表;
(2)画出频率分布直方图及频率折线图;
(3)从频率分布直方图估计出该班同学成绩的众数、中位数和平均数.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
| 上一个年度未发生有责任道路交通事故 | 下浮10% |
| 上两个年度未发生有责任道路交通事故 | 下浮20% |
| 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
| 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
| 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
| 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 |
|
|
|
|
|
|
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
,记
为某同学家的一辆该品牌车在第四年续保时的费用,求
的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
【题目】西瓜是夏日消暑的好水果,西瓜的销售价格
(单位:千元/吨)与西瓜的年产量
(单位:吨)有关,下表数据为某地区连续6年来西瓜的年产量及对应的西瓜销售价格.
| 1 | 2 | 3 | 4 | 5 | 6 |
|
|
|
|
|
|
|
(1)若
与
有较强的线性相关关系,根据上表提供的数据,用最小二乘法求出
与
的线性回归直线方程(系数精确到
);
(2)若每吨西瓜的成本为4810元,假设所有西瓜可以全部卖出,预测当年产量为多少吨 时年利润最大?
参考公式及数据:
p>对于一组数据