题目内容
14.设复数z=$\frac{2+i}{(1+i)^{2}}$(i为虚数单位),则z的虚部是( )| A. | -1 | B. | 1 | C. | -i | D. | i |
分析 利用复数的运算法则、虚部的定义即可得出.
解答 解:复数z=$\frac{2+i}{(1+i)^{2}}$=$\frac{2+i}{2i}$=$\frac{(2+i)(-i)}{2i(-i)}$=$\frac{-2i+1}{2}$=$\frac{1}{2}$-i,则z的虚部是-1.
故选:A.
点评 本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
2.某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如表所示:
已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润.
(1)求上表中a,b的值;
(2)若以频率作为概率,求事件A:“购买该品牌的3位顾客中,至多有一位采用分3期付款”的概率P(A);
(3)求Y的分布列及数学期望EY.
| 付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
| 频数 | 40 | 20 | a | 10 | b |
(1)求上表中a,b的值;
(2)若以频率作为概率,求事件A:“购买该品牌的3位顾客中,至多有一位采用分3期付款”的概率P(A);
(3)求Y的分布列及数学期望EY.
9.已知函数f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,若函数y=f(x)+f(1-x)-m恰有4个零点,则m的取值范围是( )
| A. | ($\frac{3}{4}$,+∞) | B. | (-∞,$\frac{3}{4}$) | C. | (0,$\frac{3}{4}$) | D. | ($\frac{3}{4}$,1) |