题目内容
已知等比数列{an}的前n项和为Sn,a4=2a3,S2=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+log2an,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+log2an,求数列{bn}的前n项和Tn.
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)利用等比数列{an}的通项公式和前n项和公式由已知条件求出首项和公比,由此能求出数列{an}的通项公式.
(Ⅱ)bn=an+log2an=2n+log22n=2n+n,由此利用分组求和法能求出数列{bn}的前n项和Tn.
(Ⅱ)bn=an+log2an=2n+log22n=2n+n,由此利用分组求和法能求出数列{bn}的前n项和Tn.
解答:
解:(Ⅰ)设等比数列{an}的公比为q,
由
,得
…(2分)
解得
…(4分)
所以an=a1qn-1=2n.…(6分)
(Ⅱ)bn=an+log2an=2n+log22n=2n+n,…(8分)
所以Tn=(21+1)+(22+2)+…+(2n+n)
=(21+22+…+2n)+(1+2+…+n)…(9分)
=
+
=2n+1+
-2.…(12分)
由
|
|
解得
|
所以an=a1qn-1=2n.…(6分)
(Ⅱ)bn=an+log2an=2n+log22n=2n+n,…(8分)
所以Tn=(21+1)+(22+2)+…+(2n+n)
=(21+22+…+2n)+(1+2+…+n)…(9分)
=
| 2(1-2n) |
| 1-2 |
| n(n+1) |
| 2 |
=2n+1+
| n(n+1) |
| 2 |
点评:本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查函数与方程思想,注意分组求和法的合理运用.
练习册系列答案
相关题目