题目内容

5.若x,y满足$\left\{\begin{array}{l}{x+y-3≥0}\\{kx-y+3≥0}\\{y≥0}\\{\;}\end{array}\right.$,且当z=y-x的最小值为-12,则k的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{4}$D.-$\frac{1}{4}$

分析 作出不等式组对应的平面区域,根据目标是的最小值建立不等式关系进行求解即可.

解答 解:由z=y-x得y=x+z,
要使z=y-x的最小值为-12,
即y=x-12,
则不等式对应的区域在y=x-12的上方,
先作出$\left\{\begin{array}{l}{y≥0}\\{x+y-3≥0}\\{y=x-12}\end{array}\right.$对应的图象,
由$\left\{\begin{array}{l}{y=0}\\{y=x-12}\end{array}\right.$得$\left\{\begin{array}{l}{x=12}\\{y=0}\end{array}\right.$,即C(12,0),
同时C(12,0)也在直线kx-y+3=0上,
则12k+3=0,得k=-$\frac{1}{4}$,
故选:D.

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网