题目内容
17.在△ABC中,角A,B,C所对边分别为a,b,c,$a{cos^2}\frac{C}{2}+c{cos^2}\frac{A}{2}=\frac{3b}{2}$,则sinA•sinC的最大值为$\frac{3}{4}$.分析 利用正弦定理以及基本不等式求解表达式的最值即可.
解答 解:由正弦定理得:sinAcos2$\frac{C}{2}$+sinCcos2$\frac{A}{2}$=$\frac{3}{2}$sinB,
即sinA•$\frac{1+cosC}{2}$+sinC•$\frac{1+cosA}{2}$=$\frac{3}{2}$sinB,
∴sinA+sinC+sinAcosC+cosAsinC=3sinB,即sinA+sinC+sin(A+C)=3sinB,
∵sin(A+C)=sinB,
∴sinA+sinC=2sinB,a+c=2b,由余弦定理得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-\frac{1}{4}({a+c)}^{2}}{2ac}$=$\frac{3}{8}$•$\frac{{a}^{2}+{c}^{2}}{ac}$-$\frac{1}{4}$≥$\frac{3}{4}$-$\frac{1}{4}$=$\frac{1}{2}$,
则B≤$\frac{π}{3}$.
sinA•sinC≤$({\frac{sinA+sinC}{2})}^{2}$=sin2B≤$\frac{3}{4}$.当且仅当三角形是正三角形时,取得最大值.
sinA•sinC的最大值为$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.
点评 本题考查基本不等式的应用,正弦定理的应用,考查转化思想以及计算能力.
练习册系列答案
相关题目
8.若曲线y=x2-ax+1在点P(0,1)处的切线方程为x-y+1=0,则实数a的值为( )
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
5.已知各项均为正数的等差数列{an}的前项和为Sn,且a3+a5-a${\;}_{4}^{2}$=0,则S7=( )
| A. | 8 | B. | 12 | C. | 14 | D. | 20 |
2.若cosα<0,tanα>0,则α的终边在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
7.已知R上的奇函数f(x)满足f′(x)>-2,则不等式f(x-1)<x2(3-2lnx)+3(1-2x)的解集是( )
| A. | (0,$\frac{1}{e}$) | B. | (0,1) | C. | (1,+∞) | D. | (e,+∞) |