题目内容

1.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,若直线l被圆C截得的弦长最短,则m的值为-$\frac{3}{4}$.

分析 由于直线过定点M(3,1),点M在圆C:(x-1)2+(y-2)2=25的内部,故直线被圆截得的弦长最短时,CM垂直于直线l,根据它们的斜率之积等于-1求出m的值.

解答 解:直线l:(2m+1)x+(m+1)y-7m-4=0 即(x+y-4)+m(2x+y-7)=0,过定点M(3,1),
由于点M在圆C:(x-1)2+(y-2)2=25的内部,故直线被圆截得的弦长最短时,CM垂直于直线l,
故它们的斜率之积等于-1,即$\frac{1-2}{3-1}×(-\frac{2m+1}{m+1})$=-1,解得m=-$\frac{3}{4}$,
故答案为:-$\frac{3}{4}$.

点评 本题主要考查直线和圆的位置关系,直线过定点问题,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网