题目内容
已知公比为3的等比数列{bn}与数列{an}满足{bn}=3an,n∈N*,且a1=1.
(1)判断{an}是何种数列,并给出证明;
(2)若cn=
,求数列{cn}的前n项和.
(1)判断{an}是何种数列,并给出证明;
(2)若cn=
| 1 | anan+1 |
分析:(1)根据等比数列{bn}的公比为3可得
=3,从而可求出an+1-an=1,根据等差数列的定义可判定;
(2)先求出数列{an}的通项,然后根据cn=
=
=
-
,可利用裂项求和法进行求和即可.
| bn+1 |
| bn |
(2)先求出数列{an}的通项,然后根据cn=
| 1 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)∵等比数列{bn}的公比为3
∴
=
=3an+1-an=3
∴an+1-an=1
∴{an}是等差数列
(2)∵a1=1,an+1-an=1
∴an=n
则cn=
=
=
-
∴Sn=c1+c2+c3+…cn=(1-
)+(
-
)+(
-
)+…+(
-
)=1-
∴数列{cn}的前n项和为1-
∴
| bn+1 |
| bn |
| 3an+1 |
| 3an |
∴an+1-an=1
∴{an}是等差数列
(2)∵a1=1,an+1-an=1
∴an=n
则cn=
| 1 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=c1+c2+c3+…cn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
∴数列{cn}的前n项和为1-
| 1 |
| n+1 |
点评:本题主要考查了等差数列的判定,以及裂项求和法求数列的和,同时考查了运算求解的能力,属于基础题.
练习册系列答案
相关题目