题目内容
已知数列{bn}满足条件:首项b1=1,前n项之和Bn=| 3n2-n |
| 2 |
(1)求数列{bn}的通项公式;
(2)设数列{an}的满足条件:an=(1+
| 1 |
| bn |
| 3 | bn+1 |
分析:(1)由bn=Bn-Bn-1=
-
=3n-2,能得到数列{bn}的通项公式.
(2)由an=(1+
)an-1,得
=1+
,an=
•
•
a1,由a1=2,bn=3n-2知,an=(1+
)(1+
)(1+
)2=(1+1)(1+
)(1+
),由此入手,利用数学归纳法能够证明an>
.
| 3n2-n |
| 2 |
| 3(n-1)2-(n-1) |
| 2 |
(2)由an=(1+
| 1 |
| bn |
| an |
| an-1 |
| 1 |
| bn |
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
| 1 |
| 3n-2 |
| 1 |
| 3n-5 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3n-2 |
| 3 | bn+1 |
解答:解:(1)当n>1时,bn=Bn-Bn-1
=
-
=3n-2
令n=1得b1=1,
∴bn=3n-2.(5分)
(2)由an=(1+
)an-1,得
=1+
∴an=
•
•
a1
由a1=2,bn=3n-2知,
an=(1+
)(1+
)(1+
)2
=(1+1)(1+
)(1+
)
又
=
=
,(5分)
设cn=
,
当n=1时,有(1+1)=
>
=
当n=2时,有an=(1+1)(1+
)=
=
>
=
=cn
假设n=k(k≥1)时an>cn成立,
即(1+1)(1+
)(1+
)>
成立,
则n=k+1时,
左边═(1+1)(1+
)(1+
)(1+
)
>
(1+
)=
(3分)
右边=ck+1=
=
由(ak+1)3-(ck+1)3=(3k+1)
-(3k+4)
=
=
>0,得ak+1>ck+1成立.
综合上述,an>cn对任何正整数n都成立.(3分)
=
| 3n2-n |
| 2 |
| 3(n-1)2-(n-1) |
| 2 |
令n=1得b1=1,
∴bn=3n-2.(5分)
(2)由an=(1+
| 1 |
| bn |
| an |
| an-1 |
| 1 |
| bn |
∴an=
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
由a1=2,bn=3n-2知,
an=(1+
| 1 |
| 3n-2 |
| 1 |
| 3n-5 |
| 1 |
| 4 |
=(1+1)(1+
| 1 |
| 4 |
| 1 |
| 3n-2 |
又
| 3 | bn+1 |
| 3 | 3(n+1)-2 |
| 3 | 3n+1 |
设cn=
| 3 | 3n+1 |
当n=1时,有(1+1)=
| 3 | 8 |
| 3 | 3×1+1 |
| 3 | 4 |
当n=2时,有an=(1+1)(1+
| 1 |
| 4 |
| 5 |
| 2 |
=
| 3 |
| ||
| 3 |
| ||
| 3 | 3×2+1 |
假设n=k(k≥1)时an>cn成立,
即(1+1)(1+
| 1 |
| 4 |
| 1 |
| 3k-2 |
| 3 | 3k+1 |
则n=k+1时,
左边═(1+1)(1+
| 1 |
| 4 |
| 1 |
| 3k-2 |
| 1 |
| 3(k+1)-2 |
>
| 3 | 3k+1 |
| 1 |
| 3(k+1)-2 |
| 3 | 3k+1 |
| 3k+2 |
| 3k+1 |
右边=ck+1=
| 3 | 3(k+1)+1 |
| 3 | 3k+4 |
由(ak+1)3-(ck+1)3=(3k+1)
| (3k+2)3 |
| (3k+1)3 |
=
| (3k+2)3-(3k+4)(3k+1)2 |
| (3k+1)2 |
=
| 9k+4 |
| (3k+1)2 |
综合上述,an>cn对任何正整数n都成立.(3分)
点评:本题考查数列的性质和应用,解题时要注意数列递推公式的合理运用,合理地运用数学归纳法进行证明.
练习册系列答案
相关题目