题目内容
8.给出下列一段推理:若一条直线平行于平面,则这条直线平行于平面内所有直线.已知直线a?平面α,直线b?平面α,且a∥α,所以a∥b.上述推理的结论不一定是正确的,其原因是( )| A. | 大前提错误 | B. | 小前提错误 | C. | 推理形式错误 | D. | 非以上错误 |
分析 分析该演绎推理的三段论,即可得出错误的原因是什么.
解答 解:该演绎推理的大前提是:若直线平行于平面,则该直线平行于平面内所有直线;
小前提是:已知直线a?平面α,直线b?平面α,且a∥α;
结论是:a∥b;
该结论是错误的,因为大前提是错误的,
正确叙述是“若直线平行于平面,过该直线作平面与已知平面相交,则交线与该直线平行”.
故选:A.
点评 本题通过演绎推理的三段论叙述,考查了空间中线面垂直的性质定理的应用问题,是基础题.
练习册系列答案
相关题目
18.-150°的弧度数是( )
| A. | -$\frac{5π}{6}$ | B. | $\frac{4π}{3}$ | C. | -$\frac{2π}{3}$ | D. | -$\frac{3π}{4}$ |
13.2017年4月14日,某财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如表:
(Ⅰ)根据表中数据,求出s,t的值;
(Ⅱ)利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下认为使用淡化海砂与混凝土耐久性是否达标有关?
参考数据:
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
| 混凝土耐久性达标 | 混凝土耐久性不达标 | 总计 | |
| 使用淡化海砂 | 25 | t | 30 |
| 使用未经淡化海砂 | s | ||
| 总计 | 40 | 60 |
(Ⅱ)利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下认为使用淡化海砂与混凝土耐久性是否达标有关?
参考数据:
| P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
20.$\frac{i}{{\sqrt{7}+3i}}$=( )
| A. | $\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$ | B. | $\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$ | C. | $-\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$ | D. | $-\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$ |
17.已知命题p:?x∈R,x2+ax+a2≥0(a∈R),命题q:$?{x_0}∈{N^*}$,$2x_0^2-1≤0$,则下列命题中为真命题的是( )
| A. | p∧q | B. | p∨q | C. | (?p)∨q | D. | (?p)∧(?q) |