题目内容
已知定义域为R的偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(-1)的x取值范围是______.
因为f(x)为偶函数,所以f(x)=f(|x|),
则f(2x-1)<f(-1)即为f(|2x-1|)<f(1),
又f(x)在[0,+∞)上递增,
所以|2x-1|<1,解得0<x<1,
所以满足f(2x-1)<f(-1)的x取值范围是(0,1),
故答案为:(0,1).
则f(2x-1)<f(-1)即为f(|2x-1|)<f(1),
又f(x)在[0,+∞)上递增,
所以|2x-1|<1,解得0<x<1,
所以满足f(2x-1)<f(-1)的x取值范围是(0,1),
故答案为:(0,1).
练习册系列答案
相关题目
已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(
)=0,则不等式f(log2x)>0的解集为( )
| 1 |
| 2 |
A、(0,
| ||||||
B、(
| ||||||
C、(0,
| ||||||
D、(0,
|
已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(
)=2,则不等式f(log4x)>2的解集为( )
| 1 |
| 2 |
A、(0,
| ||||||
| B、(2,+∞) | ||||||
C、(0,
| ||||||
D、(0,
|