题目内容
设函数f(x)=
sinx+
cosx,x∈R
(Ⅰ)求函数f(x)的周期和值域;
(Ⅱ)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
,且a=
b,求角C的值.
| 1 |
| 2 |
| ||
| 2 |
(Ⅰ)求函数f(x)的周期和值域;
(Ⅱ)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
| ||
| 2 |
| ||
| 2 |
分析:(Ⅰ)化简可得f(x)=sin(x+
),进而可得周期和值域;
(Ⅱ)由(Ⅰ)可得f(A)=sin(A+
)=
,由条件可得A=
,由a=
b结合正弦定理可得sinA=
sinB,可得sinB=1,根据角的范围可得B值,由三角形的内角和可得.
| π |
| 3 |
(Ⅱ)由(Ⅰ)可得f(A)=sin(A+
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
| ||
| 2 |
| ||
| 2 |
解答:解:(Ⅰ)∵f(x)=
sinx+
cosx=sin(x+
),
∴f(x)的周期为T=2π,
∵x∈R,∴x+
∈R,
∴f(x)的值域为[-1,1].
(Ⅱ)由(Ⅰ)可得f(A)=sin(A+
)=
,
∵0<A<π,
∴
<A+
<
,∴A+
=
,
解得A=
,
又∵a=
b,
∴sinA=
sinB,即
=
sinB,
解得sinB=1,
∴B=
,∴C=π-A-B=
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
∴f(x)的周期为T=2π,
∵x∈R,∴x+
| π |
| 3 |
∴f(x)的值域为[-1,1].
(Ⅱ)由(Ⅰ)可得f(A)=sin(A+
| π |
| 3 |
| ||
| 2 |
∵0<A<π,
∴
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
解得A=
| π |
| 3 |
又∵a=
| ||
| 2 |
∴sinA=
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
解得sinB=1,
∴B=
| π |
| 2 |
| π |
| 6 |
点评:本题考查三角函数公式,涉及正弦定理的应用,属中档题.
练习册系列答案
相关题目