题目内容

18.在平面直角坐标系xOy中,直线l:x=-1,点T(3,0),动点P满足PS⊥l,垂足为S,且$\overrightarrow{OP}$•$\overrightarrow{ST}$=0,设动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设Q是曲线C上异于点P的另一点,且直线PQ过点(1,0),线段PQ的中点为M,直线l与x轴的交点为N.求证:向量$\overrightarrow{SM}$与$\overrightarrow{NQ}$共线.

分析 (1)设P(x0,y0),则S(-1,y0),由此利用向量的数量积能求出曲线C的方程.
(2)设Q(x1,y1),则${{y}_{1}}^{2}=4{x}_{1}$,从而y2=4x,p=2,焦点F(1,0),N(-1,0),由PQ过F,得${x}_{1}=\frac{1}{{x}_{0}}$,${y}_{1}=-\frac{4}{{y}_{0}}$,进而$\overrightarrow{SM}$=($\frac{({x}_{0}+1)^{2}}{2{x}_{0}},-\frac{{{y}_{0}}^{2}+4}{2{y}_{0}}$),$\overrightarrow{NQ}$=($\frac{{x}_{0}+1}{{x}_{0}},-\frac{4}{{y}_{0}}$),由此能证明向量$\overrightarrow{SM}$与$\overrightarrow{NQ}$共线.

解答 解:(1)设P(x0,y0),则S(-1,y0),
∴$\overrightarrow{OP}•\overrightarrow{ST}$=(x0,y0)•(4,-y0)=4${x}_{0}-{{y}_{0}}^{2}$=0,
∴${{y}_{0}}^{2}=4{x}_{0}$.
∴曲线C:y2=4x.
证明:(2)设Q(x1,y1),则${{y}_{1}}^{2}=4{x}_{1}$,
y2=4x,p=2,焦点F(1,0),N(-1,0),
∵PQ过F,∴x0x1=-$\frac{{p}^{2}}{4}$=1,
${y}_{0}{y}_{1}=-{p}^{2}=-4$,
∴${x}_{1}=\frac{1}{{x}_{0}}$,${y}_{1}=-\frac{4}{{y}_{0}}$,
∴${x}_{M}=\frac{{x}_{0}+{x}_{1}}{2}$=$\frac{{{x}_{0}}^{2}+1}{2{x}_{0}}$,
${y}_{m}=\frac{{{y}_{0}+{y}_{1}}^{\;}}{2}$=$\frac{{{y}_{0}}^{2}-4}{2{y}_{0}}$,
∴$\overrightarrow{SM}$=($\frac{{{x}_{0}}^{2}+1}{2{x}_{0}}+1,\frac{{{y}_{0}}^{2}-4}{2{y}_{0}}-{y}_{0}$)=($\frac{({x}_{0}+1)^{2}}{2{x}_{0}},-\frac{{{y}_{0}}^{2}+4}{2{y}_{0}}$),
$\overrightarrow{NQ}$=(x1+1,y1)=($\frac{{x}_{0}+1}{{x}_{0}},-\frac{4}{{y}_{0}}$),
假设$\overrightarrow{SM}$=$λ\overrightarrow{NQ}$成立,
∴$\left\{\begin{array}{l}{\frac{({x}_{0}+1)^{2}}{2{x}_{0}}=λ•\frac{{x}_{0}+1}{{x}_{0}}}\\{-\frac{{{y}_{0}}^{2}+4}{2{y}_{0}}=λ•\frac{-4}{{y}_{0}}}\end{array}\right.$,解得$\left\{\begin{array}{l}{λ=\frac{{x}_{0}+1}{2}}\\{λ=\frac{{{y}_{0}}^{2}+4}{8}=\frac{4{x}_{0}+4}{8}=\frac{{x}_{0}+1}{2}}\end{array}\right.$,
∴$\overrightarrow{SM}=\frac{{x}_{0}+1}{2}\overrightarrow{NQ}$,
∴向量$\overrightarrow{SM}$与$\overrightarrow{NQ}$共线.

点评 本题考查曲线方程的求法,考查向量共线的证明,考查抛物线、直线方程、向量的数量积等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网