题目内容
(本小题满分13分)已知函数
, x∈R的部分图象如图所示.
![]()
(Ⅰ)求函数
的最小正周期和单调递增区间;
(Ⅱ) 设点B是图象上的最高点,点A是图象与x轴的交点,求
的值.
(Ⅰ)
,
; (Ⅱ)![]()
【解析】
试题分析:(Ⅰ)因为
=
,利用周期公式即可求出函数
的最小正周期;令
,即可求出函数
的单调递增区间;(Ⅱ)过点
作线段
垂直于
轴于点![]()
,由题意,得
,
,即可求出
的值.
试题解析:(Ⅰ)【解析】
因为![]()
2分
=
, 4分
所以
.
故函数
的最小正周期为
. 6分
由题意,得
,解得
,
所以函数
的单调递增区间为
. 9分
(Ⅱ)【解析】
如图过点
作线段
垂直于
轴于点
.
![]()
由题意,得
,
,
所以
. 13分.
考点:1.三角恒等变换;2.解三角形.
练习册系列答案
相关题目