题目内容

3.已知f(x)是奇函数,且对于任意x∈R满足f(2-x)=f(x),当0<x≤1时,f(x)=lnx+2,则函数y=f(x)在(-2,4]上的零点个数是(  )
A.7B.8C.9D.10

分析 由函数f(x)是奇函数且满足f(2-x)=f(x)知,f(x)是周期为4的周期函数,且关于直线x=1+2k(k∈R)成轴对称,关于点(2k,0)(k∈Z)成中心对称,再求出函数的零点,即可得出结论.

解答 解:由函数f(x)是奇函数且满足f(2-x)=f(x)知,f(x)是周期为4的周期函数,
且关于直线x=1+2k(k∈R)成轴对称,关于点(2k,0)(k∈Z)成中心对称.
当0<x≤1时,令f(x)=lnx+2=0,得x=$\frac{1}{{e}^{2}}$,由此得y=f(x)在(-2,4]上的零点分别为-2+$\frac{1}{{e}^{2}}$,-$\frac{1}{{e}^{2}}$,0,$\frac{1}{{e}^{2}}$,2-$\frac{1}{{e}^{2}}$,2,2+$\frac{1}{{e}^{2}}$,-$\frac{1}{{e}^{2}}$+4,4共9个零点.
故选C.

点评 本题考查函数的奇偶性、对称性,考查函数的零点,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网