ÌâÄ¿ÄÚÈÝ
12£®ÎÒÏØ´Ó2011ÄêÆðÿÄê¹úÇìÆÚ¼ä¶¼¾Ù°ìÒ»½ìºþ±±Þ´ºÖйúÆû³µ³¡µØÔ½Ò°´ó½±Èü£¬µ½2016ÄêÒѾٰìÁËÁù½ì£¬ÂÃÓβ¿ÃÅͳ¼ÆÔÚÿ½ì½Ú»áÆÚ¼ä£¬ÎüÒýÁ˲»ÉÙÍâµØÓο͵½Þ´º£¬Õ⽫¼«´óµØÍƽøÞ´ºµÄÂÃÓÎÒµµÄ·¢Õ¹£¬ÏÖ½«Ç°Îå½ìÞ´ºÖйúÆû³µ³¡µØÔ½Ò°´ó½±ÈüÆÚ¼äÍâµØÓο͵½Þ´ºµÄÈËÊýͳ¼ÆÈç±í£º| Äê·Ý | 2011Äê | 2012Äê | 2013Äê | 2014Äê | 2015Äê |
| Æû³µÔ½Ò°Èü½ì±àºÅx | 1 | 2 | 3 | 4 | 5 |
| ÍâµØÓοÍÈËÊýy£¨µ¥Î»£ºÊ®Íò£© | 0.6 | 0.8 | 0.9 | 1.2 | 1.5 |
£¨2£©ÂÃÓβ¿ÃÅͳ¼ÆÔÚÿ½ì½Ú»áÆÚ¼ä£¬Ã¿Î»ÍâµØÓοͿÉΪ±¾ÊÐÏØ¼Ó100Ôª×óÓÒµÄÂÃÓÎÊÕÈ룬ÀûÓã¨1£©ÖеÄÏßÐԻع鷽³Ì£¬Ô¤²â2017ÄêµÚ7½ìºþ±±Þ´ºÆû³µ³¡µØÔ½Ò°´ó½±ÈüÆÚ¼äÍâµØÓοͿÉΪ±¾ÏØÔö¼ÓµÄÂÃÓÎÊÕÈë´ï¶àÉÙ£¿²Î¿¼¹«Ê½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=0}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£¬$\widehat{a}$=$\overline{y}$-b$\overline{x}$£®
·ÖÎö £¨1£©Ç󻨹éϵÊý£¬¼´¿ÉÇóy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£»
£¨2£©ÓÉ£¨1£©Öª£¬µ±x=7ʱ£¬$\widehat{y}$=0.22¡Á7+0.34=1.88£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÓÉËù¸øÊý¾Ý¼ÆËãµÃ£º$\overline{x}$=3£¬$\overline{y}$=1£¬
¡à$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=0}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{2.2}{10}$=0.22£¬$\widehat{a}$=$\overline{y}$-b$\overline{x}$=1-0.22¡Á3=0.34£¬
ËùÇóµÄ»Ø¹é·½³ÌΪ$\widehat{y}$=0.22x+0.34£®
£¨2£©ÓÉ£¨1£©Öª£¬µ±x=7ʱ£¬$\widehat{y}$=0.22¡Á7+0.34=1.88£¬ÓÚÊÇÔ¤²â2017ÄêµÚÆß½ìºþ±±Þ´ºÖйúÆû³µ³¡µØÔ½Ò°Èüµ½Þ´ºµÄÍâµØÓοͿɴï18Íò8ǧÈË£¬ÓÉ188000¡Á100=18800000£¨Ôª£©£¬Ô¤²â2017ÄêµÚ7½ìºþ±±Þ´ºÖйúÆû³µ³¡µØÔ½Ò°ÈüÆÚ¼äÍâµØÓοͿÉΪ±¾ÊÐÔö¼ÓµÄÂÃÓÎÊÕÈë´ï1880ÍòÔª£®
µãÆÀ ±¾Ì⿼²é»Ø¹é·½³ÌÓëÔËÓã¬ÕýÈ·Çó³ö»Ø¹éϵÊýÊǹؼü£®
| A£® | -$\frac{1}{2}$ | B£® | -2 | C£® | $\frac{1}{2}$ | D£® | 2 |
| A£® | 7 | B£® | 8 | C£® | 9 | D£® | 10 |
| A£® | 5 | B£® | $\sqrt{26}$ | C£® | 2$\sqrt{5}$ | D£® | 10 |
| A£® | ³ä·Ö¶ø²»±ØÒªÌõ¼þ | B£® | ±ØÒª¶ø²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | £¨-¡Þ£¬-$\frac{1}{2}$£© | B£® | £¨-¡Þ£¬-1£© | C£® | £¨-1£¬-$\frac{1}{2}$£© | D£® | £¨-¡Þ£¬-2£©¡È£¨0£¬1£© |