题目内容

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点为(-$\sqrt{5}$,0),a=2b,则双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{2}$-y2=1B.$\frac{{x}^{2}}{4}$-y2=1C.x2-$\frac{{y}^{2}}{2}$=1D.x2-$\frac{{y}^{2}}{4}$=1

分析 利用已知条件求出双曲线的虚半轴,实半轴的长,即可得到双曲线方程.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点为(-$\sqrt{5}$,0),a=2b,
可得a2+b2=5,解得a=2,b=1,
双曲线的标准方程为:$\frac{{x}^{2}}{4}$-y2=1.
故选:B.

点评 本题考查双曲线的标准方程的求法,双曲线的简单性质的应用,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网