题目内容
在△ABC中,若,BC=3, ,则AC= ( )
(A)1 (B)2 (C)3 (D)4
已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1
已知实数x,y满足 ,则x2+y2的取值范围是 .
已知函数f(x)=4tanxsin()cos()-.
(Ⅰ)求f(x)的定义域与最小正周期;
(Ⅱ)讨论f(x)在区间[]上的单调性.
已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程恰好有两个不相等的实数解,则a的取值范围是( )
(A)(0,] (B)[,] (C)[,]{}(D)[,){}
已知是等比数列,前n项和为,且.
(Ⅰ)求的通项公式;
(Ⅱ)若对任意的是和的等差中项,求数列的前2n项和.
阅读右边的程序框图,运行相应的程序,则输出的值为_______.
某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
①第一天售出但第二天未售出的商品有______种;
②这三天售出的商品最少有_______种.
设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)证明当时,;
(Ⅲ)设,证明当时,.