ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªÔÚÊýÁÐ{an}ÖУ¬a1=1£¬ÆäǰnÏîºÍΪsn£¬ÇÒ${a_n}=\frac{2s_n^2}{{2{s_n}-1}}$£¨n¡Ý2£©£¨1£©Ö¤Ã÷$\left\{{\frac{1}{s_n}}\right\}$ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ$\left\{{\frac{1}{s_n}}\right\}$µÄǰnÏîºÍPn
£¨2£©Èô${b_n}=\frac{s_n}{2n+1}+\frac{2^n}{s_n}$ÇóÊýÁеÄǰÏîºÍTn£®
·ÖÎö £¨1£©µ±n¡Ý2ʱ£¬${a_n}={s_n}-{s_{n-1}}=\frac{2s_n^2}{{2{s_n}-1}}$£¬»¯¼òµÃsn-1-sn=2snsn-1£¬ÀûÓõȲîÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¼´¿ÉµÃ³ö£®
£¨2£©ÓÉ£¨1£©¿ÉµÃSn£¬ÔÙÀûÓá°´íλÏà¼õ·¨¡±ÓëµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©Ö¤Ã÷£ºµ±n¡Ý2ʱ£¬${a_n}={s_n}-{s_{n-1}}=\frac{2s_n^2}{{2{s_n}-1}}$£¬
»¯¼òµÃsn-1-sn=2snsn-1£¬¼´$\frac{1}{s_n}-\frac{1}{{{s_{n-1}}}}=2$£¬ÓÖ$\frac{1}{s_1}=\frac{1}{a_1}=1$£¬
ËùÒÔÊýÁÐ$\left\{{\frac{1}{s_n}}\right\}$ΪÒÔ1ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ¬
$\frac{1}{s_n}=2n-1$£¬ÔòPn=$\frac{£¨1+2n-1£©•n}{2}$=n2£®
£¨2£©ÓÉ£¨1£©µÃ$\frac{1}{s_n}=2n-1$£¬
ËùÒÔ${s_n}=\frac{1}{2n-1}$£¬${b_n}=\frac{s_n}{2n+1}+\frac{2^n}{s_n}=\frac{1}{£¨2n-1£©£¨2n+1£©}+£¨2n-1£©¡Á{2^n}$
=$\frac{1}{2}£¨\frac{1}{2n-1}-\frac{1}{2n+1}£©+£¨2n-1£©¡Á{2^n}$£¬
ËùÒÔ${A_n}=\frac{1}{2}£¨1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+¡+\frac{1}{2n-1}-\frac{1}{2n+1}£©=\frac{n}{2n+1}$${B_n}=1¡Á2+3¡Á{2^2}+5¡Á{2^3}+¡+£¨2n-3£©¡Á{2^{n-1}}+£¨2n-1£©¡Á{2^n}$£¬¢Ù$2{B_n}=1¡Á{2^2}+3¡Á{2^3}+5¡Á{2^4}+¡+£¨2n-3£©¡Á{2^n}+£¨2n-1£©¡Á{2^{n+1}}$£¬¢Ú
¢Ù-¢ÚµÃ£¬$-{B_n}=1¡Á2+2¡Á{2^2}+2¡Á{2^3}+¡+2¡Á{2^{n-1}}+2¡Á{2^n}-£¨2n-1£©¡Á{2^{n+1}}$
=£¨3-2n£©¡Á2n+1-6£¬
¡à${T_n}={A_n}+{B_n}=\frac{n}{2n+1}+£¨2n-3£©¡Á{2^{n+1}}+6$£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢¡°´íλÏà¼õ·¨¡±¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{5}{4}$ | B£® | $\frac{5}{3}$ | C£® | $\sqrt{5}$ | D£® | $\frac{5}{2}$ |
| A£® | $\sqrt{2}$ | B£® | $\sqrt{7}$ | C£® | $2\sqrt{2}$ | D£® | $\sqrt{10}$ |
| A£® | |a|¡Ý1 | B£® | b¡Ü1 | C£® | |a+2b|¡Ý2 | D£® | |a+2b|¡Ü2 |
| A£® | 4¦Ð | B£® | 8¦Ð | C£® | 16¦Ð | D£® | 2$\sqrt{2}$¦Ð |
| A£® | ³äÒªÌõ¼þ | B£® | ³ä·Ö²»±ØÒªÌõ¼þ | ||
| C£® | ±ØÒª²»³ä·ÖÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | {0£¬1} | B£® | {-1£¬0£¬1} | C£® | ∅ | D£® | {-1} |