题目内容
(2012•甘谷县模拟)(理) 设数列{an}为正项数列,其前n项和为Sn,且有an,sn,
成等差数列.(1)求通项an;(2)设f(n)=
求f(n)的最大值.
| a | 2 n |
| sn |
| (n+50)sn+1 |
分析:(1)根据an,sn,
成等差数列,可得2Sn=an+
,再写一式,两式相减,可得{an}是公差为1的等差数列,从而可求通项an;
(2)由(1)知,Sn=
,从而f(n)=
=
,利用基本不等式,即可求f(n)的最大值.
| a | 2 n |
| a | 2 n |
(2)由(1)知,Sn=
| n(n+1) |
| 2 |
| Sn |
| (n+50)Sn+1 |
| 1 | ||
n+
|
解答:解:(1)∵an,sn,
成等差数列
∴2Sn=an+
,
∴n≥2时,2Sn-1=an-1+
,
两式相减得:2an=an2+an-
-an-1,
∴(an+an-1)(an-an-1-1)=0
∵数列{an}为正项数列,∴an-an-1=1
即{an}是公差为1的等差数列
又2a1=a12+a1,∴a1=1
∴an=1+(n-1)×1=n;
(2)由(1)知,Sn=
,
∴f(n)=
=
=
≤
当且仅当n=10时,f(n)有最大值
.
| a | 2 n |
∴2Sn=an+
| a | 2 n |
∴n≥2时,2Sn-1=an-1+
| a | 2 n-1 |
两式相减得:2an=an2+an-
| a | 2 n-1 |
∴(an+an-1)(an-an-1-1)=0
∵数列{an}为正项数列,∴an-an-1=1
即{an}是公差为1的等差数列
又2a1=a12+a1,∴a1=1
∴an=1+(n-1)×1=n;
(2)由(1)知,Sn=
| n(n+1) |
| 2 |
∴f(n)=
| Sn |
| (n+50)Sn+1 |
| n |
| n2+52n+100 |
| 1 | ||
n+
|
| 1 |
| 72 |
当且仅当n=10时,f(n)有最大值
| 1 |
| 72 |
点评:本题考查数列递推式,考查数列的通项与求和,解题的关键是确定数列为等差数列,利用基本不等式求最值.
练习册系列答案
相关题目