题目内容
(2012•甘谷县模拟)(文)数列{an}满足an+1=
an(n∈N*),且a1=1.(1)求通项an;(2)记bn=
,数列{bn}的前n项和为Sn,求Sn.
| n+2 |
| n |
| 1 |
| an |
分析:(1)由∴
=
,利用叠乘法可求数列的通项
(2)由bn=
=
=2(
-
),利用裂项相消法可求数列的和
| an+1 |
| an |
| n+2 |
| n |
(2)由bn=
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解(1)∵an+1=
an,
∴
=
∵a1=1
∴
=
,
=
…
=
以上n-1个式子相乘可得,
•
…
=
×
×
…
×
×
∴
=
∴an=
(2)∵bn=
=
=2(
-
)
Sn=2(1-
+
-
+…+
-
)=2(1-
)=
| n+2 |
| n |
∴
| an+1 |
| an |
| n+2 |
| n |
∵a1=1
∴
| a2 |
| a1 |
| 3 |
| 1 |
| a3 |
| a2 |
| 4 |
| 2 |
| an |
| an-1 |
| n+1 |
| n-1 |
以上n-1个式子相乘可得,
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
| 3 |
| 1 |
| 4 |
| 2 |
| 5 |
| 3 |
| n-1 |
| n-3 |
| n |
| n-2 |
| n+1 |
| n-1 |
∴
| an |
| a1 |
| n(n+1) |
| 1×2 |
∴an=
| n(n+1) |
| 2 |
(2)∵bn=
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
Sn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 2n |
| n+1 |
点评:本题主要考查了数列的通项公式求解中的叠乘法及数列求和的裂项相消法的应用.
练习册系列答案
相关题目