题目内容

3.在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=AC=$\sqrt{3}$,∠BAC=120°,D为棱BC上一个动点,设直线PD与平面ABC所成的角θ,则θ不大于45°的概率为$\frac{3}{4}$.

分析 由题意,直线PD与平面ABC所成的角θ=45°,AD=1,∠BAD=90°,以角度为测度,即可求出θ不大于45°的概率.

解答 解:由题意,直线PD与平面ABC所成的角θ=45°,AD=1,∠BAD=90°,
∴θ不大于45°的概率为$\frac{90}{120}$=$\frac{3}{4}$,
故答案为$\frac{3}{4}$.

点评 本题考查概率的计算,考查几何概型,正确求角度是关键.

练习册系列答案
相关题目
14.经统计,2015年,某公路在部分界桩附近发生的交通事故次数如下表:
界桩公里数  100110051010102010251049
交通事故数  804035333230

(Ⅰ)把界桩公里数1001记为x=1,公里数1005记为x=5,…,数据绘成的散点图如图所示,以x为解释变量、交通事故数y为预报变量,请在y=a+be-x和y=a+$\frac{b}{x}$间选取一个建立回归方程表述x,y二者之间的关系(a,b的值精确到0.1);
(Ⅱ)若保险公司在2015年交通事故中随机抽取100例,理赔60万元的有1例,理赔2万元的有19例,理赔0.2万元的有80例.
      利用你得到的回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).
附:回归直线v=$\widehat{α}$+$\widehat{β}$u的斜率和截距的最小二乘法估计分别为:
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
一些量的计算值:
$\overline{x}$   $\overline{y}$        $\overline{ω}$        $\overline{φ}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})^{2}$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})^{2}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})({y}_{i}-\overline{y})$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})({y}_{i}-\overline{y})$
18.341.7  0.235  0.062 0.723 0.112 36.3 14.1
表中:ωi=$\frac{1}{{x}_{i}}$,$\overline{ω}$=$\frac{1}{6}$$\sum_{i=1}^{6}{ω}_{i}$;φi=e${\;}^{-{x}_{i}}$,$\overline{φ}$=$\frac{1}{6}$$\sum_{i=1}^{6}{φ}_{i}$,$\frac{1}{40}$=0.025,e-40≈0.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网