题目内容
已知,,若,则( )
A. B. C. D.
如图,在四棱锥中,底面为直角梯形,AD‖BC, ,平面⊥底面,Q为AD的中点,M是棱PC上的点,PA=PD=AD=2,BC=1,CD=.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为,设PM=tMC,试确定t的值.
已知为的外心,,,若,且,则
已知抛物线的焦点为,准线为,过点的直线交抛物线于两点,过点作准线的垂线,垂足为,当点的坐标为时,为正三角形,则此时的面积为( )
下列函数中,的最小值为4的是( )
A.
B.
C.
D.
若点满足线性约束条件,点,为坐标原点,则的最大值为( )
A.0 B.3 C.-6 D.6
平行线和的距离是( )
A. B.2 C. D.
设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.
对两条不相交的空间直线和,则( )
A.必定存在平面,使得,
B.必定存在平面,使得,
C.必定存在直线,使得,
D.必定存在直线,使得,