题目内容
已知Sn=1+2+3+…+n,f(n)=| Sn | (n+32)Sn+1 |
分析:先求出Sn=
,Sn+1=
,从而得到f(n)=
.然后用均值不等式求出其最终结果.
| n(n+1) |
| 2 |
| (n+1)(n+2) |
| 2 |
| 1 | ||
n+
|
解答:解:∵Sn=1+2+3+…+n=
,Sn+1=
,
∴f(n)=
=
=
≤
=
.
| n(n+1) |
| 2 |
| (n+1)(n+2) |
| 2 |
∴f(n)=
| ||
(n+32)×
|
| n |
| n2+34n+ 64 |
| 1 | ||
n+
|
| 1 | ||||
34+2
|
| 1 |
| 50 |
点评:本题考查数列的极限的求法,解题时要认真审题,仔细解答,注意均值不等式的合理运用.
练习册系列答案
相关题目