题目内容
6.已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn.
分析 (1)根据等差数列的通项公式列方程组,求出首项和公差即可得出通项公式;
(2)利用裂项法求和.
解答 解:(1)设等差数列{an}的公差为d,
∵a3+a8=20,且a5是a2与a14的等比中项,
∴$\left\{\begin{array}{l}{2{a}_{1}+9d=20}\\{({a}_{1}+4d)^{2}=({a}_{1}+d)({a}_{1}+13d)}\end{array}\right.$,解得a1=1,d=2,
∴an=1+2(n-1)=2n-1.
(2)bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$),
∴Sn=b1+b2+b3+…+bn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}-\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.
点评 本题考查了等差数列的性质,数列求和,属于中档题.
练习册系列答案
相关题目
12.为了解600名学生的视力情况,采用系统抽样的方法,从中抽取容量为20的样本,则需要分成几个小组进行抽取( )
| A. | 20 | B. | 30 | C. | 40 | D. | 50 |
11.已知f(x)=x2ex,若函数g(x)=f2(x)-kf(x)+1恰有四个零点,则实数k的取值范围是( )
| A. | (-∞,-2)∪(2,+∞) | B. | (2,$\frac{4}{{e}^{2}}$+$\frac{{e}^{2}}{4}$) | C. | ($\frac{8}{{e}^{2}}$,2) | D. | ($\frac{4}{{e}^{2}}$+$\frac{{e}^{2}}{4}$,+∞) |