题目内容
如图,在几何体ABC-A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,E为AB1中点,AB=AA1=BB1=2CC1.求证
(1)CE∥平面A1B1C1;
(2)平面AB1C1⊥平面A1BC.
证明:(1)由题知AA1⊥平面ABC,BB1⊥平面ABC,CC1⊥平面ABC,
∴AA1∥BB1∥CC1.
如图,取A1B1中点F,连接EF,FC1.
![]()
∵E为AB1中点,∴EF綊
A1A,
又AA1=2CC1,∴CC1綊
AA1,
∴EE綊CC1,∴四边形EFC1C为平行四边形,
∴CE∥C1F,
又CE⊄平面A1B1C1,C1F⊂平面A1B1C1,
∴CE∥平面A1B1C1.
(2)∵BB1⊥平面ABC,∴BB1⊥BC,
又AB⊥BC,AB∩BB1=B,
∴BC⊥平面AA1B1B,
∵AB1⊂平面AA1B1B,∴BC⊥AB1,
∵AA1=BB1=AB,AA1∥BB1,
∴四边形AA1B1B为正方形,∴AB1⊥A1B,
∵A1B∩BC=B,
∴AB1⊥平面A1BC,
∵AB1⊂平面AB1C1,
∴平面AB1C1⊥平面A1BC
练习册系列答案
相关题目