题目内容

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的渐近线为等边三角形OAB的边OA、OB所在直线,直线AB过焦点,且|AB|=2,则双曲线实轴长为(  )
A.$\sqrt{3}$B.$3\sqrt{2}$C.$\frac{3}{2}$D.3

分析 利用双曲线方程以及渐近线的性质求出a,b关系式,通过|AB|=2,求出c,然后求解a即可得到结果.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的渐近线为等边三角形OAB的边OA、OB所在直线,
可得$\frac{b}{a}=\frac{\sqrt{3}}{3}$,直线AB过焦点,且|AB|=2,
可得c=$\sqrt{3}$,
则$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=\frac{1}{3}$,
解得a=$\frac{3}{2}$.
则双曲线实轴长为:3.
故选:D.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网