题目内容

已知正数x,y,z满足5x+4y+3z=10.
(1)求证:
25x 2
4y+3z
+
16y2
3z+5x
+
9z2
5x+4y
≥5

(2)求9x2+9y2+z2的最小值.
分析:(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][
25x2
4y+3z
+
16y2
3z+5x
+
9z2
5x+4y
]
≥(5x+4y+3z)2
因为5x+4y+3z=10,从而得出结论.
(2)先根据均值不等式,得9x2+9y2+z2≥2
9x29y2+z2
=2•3x2+y2+z2
,再根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2即可求出最小值.
解答:解:(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][
25x2
4y+3z
+
16y2
3z+5x
+
9z2
5x+4y
]
≥(5x+4y+3z)2
因为5x+4y+3z=10,所以
25x2
4y+3z
+
16y2
3z+5x
+
9z2
5x+4y
102
20
=5

(2)根据均值不等式,得9x2+9y2+z2≥2
9x29y2+z2
=2•3x2+y2+z2

当且仅当x2=y2+z2时,等号成立.
根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,
即  (x2+y2+z2)≥2,当且仅当
x
5
=
y
4
=
z
3
时,等号成立.
综上,9x2+9y2+z2≥2•32=18
点评:本小题主要考查一般形式的柯西不等式、均值不等式等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网