题目内容
函数f(x)=
cos2x-sin2x的单调减区间为( )
| 3 |
A.[kπ+
| B.[kπ-
| ||||||||
C.[2kπ-
| D.[kπ-
|
∵函数f(x)=
cos2x-sin2x=2(
cos2x-
sin2x)=2sin(
-2x)=-2sin(2x-
),
故本题即求y=2sin(2x-
)的增区间.
由 2kπ-
≤2x-
≤2kπ+
,k∈z,可得 kπ-
≤x≤2kπ≤kπ+
,k∈z.
故y=2sin(2x-
)的增区间为[kπ-
,kπ+
],k∈Z,
故选D.
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| π |
| 3 |
| π |
| 3 |
故本题即求y=2sin(2x-
| π |
| 3 |
由 2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 12 |
| 5π |
| 12 |
故y=2sin(2x-
| π |
| 3 |
| π |
| 12 |
| 5π |
| 12 |
故选D.
练习册系列答案
相关题目