题目内容

12.已知数列{an}中,a1=1,其前n项和为Sn,且满足an=$\frac{{2S}_{n}^{2}}{2{S}_{n}-1}$(n≥2),则数列{an}的前n项和为Sn=$\frac{1}{2n-1}$.

分析 an=$\frac{{2S}_{n}^{2}}{2{S}_{n}-1}$(n≥2),可得:(Sn-Sn-1)(2Sn-1)=2${S}_{n}^{2}$,化为$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,再利用等差数列的通项公式即可得出.

解答 解:∵an=$\frac{{2S}_{n}^{2}}{2{S}_{n}-1}$(n≥2),
∴(Sn-Sn-1)(2Sn-1)=2${S}_{n}^{2}$,
化为:-Sn-2SnSn-1+Sn-1=0,
∴$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,公差为2,首项为1.
∴$\frac{1}{{S}_{n}}$=1+2(n-1)=2n-1.
∴Sn=$\frac{1}{2n-1}$(n=1时也成立).
故答案为:$\frac{1}{2n-1}$.

点评 本题考查了递推关系、等差数列递通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网