题目内容

14.已知椭圆Q:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),F1,F2分别是其左、右焦点,以线段F1F2为直径的圆与椭圆Q有且仅有两个交点.
(1)求椭圆Q的方程;
(2)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点P,点P横坐标的取值范围是[-$\frac{1}{4}$,0),求|AB|的最小值.

分析 (1)由题意可知c=b=1,由此能求出椭圆的方程.
(2)设直线l方程为y=k(x+1),(k≠0),代入$\frac{{x}^{2}}{2}+{y}^{2}=1$,得(1+2k2)x2+4k2x+2k2-2=0,由此利用中点坐标公式、韦达定理、线段垂直平分线方程、弦长公式,结合已知条件能求出|AB|的最小值.

解答 (本小题满分12分)
解:(1)∵椭圆Q:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),F1,F2分别是其左、右焦点,
以线段F1F2为直径的圆与椭圆Q有且仅有两个交点,
∴由题意可知c=b=1,
∴a=$\sqrt{2}$,故椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(2)设直线l方程为y=k(x+1),(k≠0),
代入$\frac{{x}^{2}}{2}+{y}^{2}=1$,得(1+2k2)x2+4k2x+2k2-2=0,
设A(x1,y1),B(x2,y2),AB中点N(x0,y0),
∴${x}_{1}+{x}_{2}=-\frac{4{k}^{2}}{1+2{k}^{2}}$,${x}_{1}{x}_{2}=\frac{2{k}^{2}-2}{1+2{k}^{2}}$.
∴${x}_{0}=\frac{1}{2}({x}_{1}+{x}_{2})$=-$\frac{2{k}^{2}}{1+2{k}^{2}}$,${y}_{0}=k({x}_{0}+1)=\frac{k}{1+2{k}^{2}}$,
∴AB的垂直平分线方程为y-y0=-$\frac{1}{k}(x-{x}_{0})$,
令y=0,得${x}_{P}={x}_{0}+k{y}_{0}=-\frac{1}{2}+\frac{1}{4{k}^{2}+2}$,
∵${x}_{P}∈[-\frac{1}{4},0)$,∴-$\frac{1}{4}≤-\frac{1}{2}+\frac{1}{4{k}^{2}+2}$,∴0<k2$≤\frac{1}{2}$.
|AB|=$\sqrt{1+{k}^{2}}$|x2-x1|=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16{k}^{4}-4(2{k}^{2}+1)(2{k}^{2}-2)}}{2{k}^{2}+1}$
=2$\sqrt{2}$[$\frac{1}{2}+\frac{1}{2(2{k}^{2}+1)}$]$≥\frac{3\sqrt{2}}{2}$,
|AB|的最小值|AB|min=$\frac{3\sqrt{2}}{2}$.

点评 本题考查椭圆方程的求法,考查线段长的最小值的求法,是中档题,解题时要认真审题,注意中点坐标公式、韦达定理、线段垂直平分线方程、弦长公式、椭圆性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网