题目内容
在△ABC中,sin(C-A)=1,sinB=
.
(Ⅰ)求sinA的值;
(Ⅱ)设AC=
,求△ABC的面积.
| 1 |
| 3 |
(Ⅰ)求sinA的值;
(Ⅱ)设AC=
| 6 |
(Ⅰ)因为sin(C-A)=1,所以C-A=
,且C+A=π-B,
∴A=
-
,
∴sinA=sin(
-
)=
(cos
-sin
),
∴sin2A=
(1-sinB)=
,
又sinA>0,∴sinA=
(Ⅱ)如图,由正弦定理得
=
∴BC=
=
=3
,
又sinC=sin(A+B)=sinAcosB+cosAsinB=
×
+
×
=
∴S△ABC=
AC•BC•sinC=
×
×3
×
=3

| π |
| 2 |
∴A=
| π |
| 4 |
| B |
| 2 |
∴sinA=sin(
| π |
| 4 |
| B |
| 2 |
| ||
| 2 |
| B |
| 2 |
| B |
| 2 |
∴sin2A=
| 1 |
| 2 |
| 1 |
| 3 |
又sinA>0,∴sinA=
| ||
| 3 |
(Ⅱ)如图,由正弦定理得
| AC |
| sinB |
| BC |
| sinA |
∴BC=
| ACsinA |
| sinB |
| ||||||
|
| 2 |
又sinC=sin(A+B)=sinAcosB+cosAsinB=
| ||
| 3 |
2
| ||
| 3 |
| ||
| 3 |
| 1 |
| 3 |
| ||
| 3 |
∴S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 6 |
| 2 |
| ||
| 3 |
| 2 |
练习册系列答案
相关题目