题目内容
16.函数y=lnsin(-2x+$\frac{π}{3}$)的单调递减区间为(kπ-$\frac{π}{12}$,kπ+$\frac{π}{6}$),k∈Z.分析 根据复合函数单调性之间的关系分别进行求解即可.
解答 解:由sin(-2x+$\frac{π}{3}$)>0得-sin(2x-$\frac{π}{3}$)>0,即sin(2x-$\frac{π}{3}$)<0,
得2kπ-π<2x-$\frac{π}{3}$<2kπ,k∈Z,
要求函数y=lnsin(-2x+$\frac{π}{3}$)的单调递减区间,即求函数t=sin(-2x+$\frac{π}{3}$)递减区域,
即求m=sin(2x-$\frac{π}{3}$)的递增区间,
由2kπ-$\frac{π}{2}$<2x-$\frac{π}{3}$<2kπ,得kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{6}$,
即函数y=lnsin(-2x+$\frac{π}{3}$)的单调递减区间为(kπ-$\frac{π}{12}$,kπ+$\frac{π}{6}$),k∈Z,
故答案为:(kπ-$\frac{π}{12}$,kπ+$\frac{π}{6}$),k∈Z.
点评 本题主要考查函数单调区间的求解,根据复合函数单调性之间的关系进行转化求解是解决本题的关键.注意对数函数的定义域.
练习册系列答案
相关题目
6.若复数z满足2z-$\overline{z}$=2+3i(i为虚数单位),则|z|=( )
| A. | $\sqrt{5}$ | B. | 5 | C. | $\sqrt{13}$ | D. | 13 |
2.已知等差数列{an}满足$\frac{si{n}^{2}{a}_{6}co{s}^{2}{a}_{9}-si{n}^{2}{a}_{9}co{s}^{2}{a}_{6}}{sin({a}_{7}+{a}_{8})}$=1,公差d∈(-1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,则该数列首项a1的取值范围是( )
| A. | ($\frac{4π}{3}$,$\frac{3π}{2}$) | B. | [$\frac{4π}{3}$,$\frac{3π}{2}$] | C. | ($\frac{7π}{6}$,$\frac{4π}{3}$) | D. | [$\frac{7π}{6}$,$\frac{4π}{3}$] |